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ASYMPTOTIC THEORY OF ELASTIC PLATE BUCKLING UNDER 
LATERAL COMPRESSION* 

A. N. RUDEV 

Homogeneous solutions obtained in /l/ are used for investigating in three-dimension- 

al formulation the stability of a thick plate of arbitrary shape of neo-Hookean 

material and free of constraints, /2/. Boundary conditions at lateral surfaces 
are obtained using the variational principle of superposition of a small deforma- 

tion on a finite one, as proposed in /3/. As the result, the problem of critical 
pressure determination is reduced to the general problem of eigenvalues for an in- 

finite homogeneous system of operator equations whose dependence (explicit as well 

as implicit) on the initial deformation parameters is essentially nonlinear. The 
asymptotic method proposed in /4/ is extended so as to make possible the determina- 

tion of critical load asymptotics, as the plate thickness E approaches zero. The 

effect of potential solutions that correspond to irregular (with the initialdeforma- 

tion eliminated) rootsofthe characteristic equation /l/, and have no analogs in 

the linear theory of elasticity /5/, on the plate stress-strain state and on the 

magnitude of critical pressure is determined. It is shown that the two-dimensional 
theory of plate buckling based on the Kirchhoff hypotheses /6/ makes possible the 

correct determination of the principal terms of thecriticalload asymptotics as 

e -0. As an example, the axisymmetric buckling of a circular plate is considered. 

Five terms of the asymptotic expansion of the critical load are obtained. It is 
established that the classic theory yields a deficient critical force, with a 

relative error of the order of e*. 

1. Let us consider a plate of incompressible neo-Hookean material of thickness 2h sub- 

jected to uniform pressure t at its side surface. It is assumed that the plate is unrestrain- 

ed, its end-faces free of stress, that mass forces are absent, and the surface loading is 

dead. Under these conditions the plate deformation is defined as follows: 

y, = hz,, Y, = hz,, y, = h-2x, (h = const) (1.1) 

where zk,Yk(k = 1,2,3) are Cartesian coordinates, respectively, prior to and after deforma- 

tion. The relation between t and h is such that 

t = G (h-4 - A*) (1.2) 

where Gis the shear modulus of the material. A small bending deformation, defined by the 

equations of neutral equilibrium in /7,1/, is superposed on the finite deformation (1.1). 

We introduce a local system of dimensionless coordinates n, S, 5 /5/. The following nota- 

tion is used below: 7 is the volume of the undeformed plate; o is .the plate surface; r is 

the contour boundinq the middle plane (assumed reasonably smooth); R is the radius of curvat- 

ure the contour r; 2a is a characteristic longitudinal dimension of the plate; p = a/R is 

the dimensionless curvature; e=h/a is the plate relative thickness; u,v,w , and &m (k, 
m=i,2,3) are vectors of additional displacement and of the additional Piola stress tensor 
/2,7/ in the system n, s, 5 with indices 1,2,3 corresponding, respectively, to axes n, s, 5; p 
is the indeterminate function of coordinates related to the incompressibility of the material 

/2/F H = (1 + pn)-' is a quantity inverse to the Lame coefficient of the considered curvilinear 

coordinate system; Bi (i = 1,2) are operators of differentiation with respect to n and s, 

respectively, and A is the two-dimensional Laplace operator in variables n and s. 
In the local coordinate system the homogeneous solutions of neutral equilibrium equations 

/l/ are of the form (y = h+, 0 = 1 + y2): 
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The penetrating solution 

U = aey&Y + ae3A (&?,AY 

V = aey gH&Y + ae3A (QH&AY 

W = --aY + aeZB (G)AY, P = shC (c)AY 

A (5) = --ya,-2 5 + PO-’ IOX, (1, $37 - w&l (v, t)l 

B (5) = ao- * + g [OY, (1, v5) - 2Y2Yll h, 91 

C (5) = a,-’ 0 cos a,X, (1, yc), g = aOe8 (y$ - I)-’ cos a, 

X, (5, y) = COs aOx sin a,y, Y, (2, y) = Cos aOx cos a,y 

eaAaY - a,2AY = 0 (1.3) 

where a, is any of the two pure imaginary roots of the characteristic equation /l/, 

the vortex solution 

u0 zzz - UE2 5 F, (5) H&B,, v” = as2 i F,,, (5) &B, , w” = p” = 0 
m=, rn=l 

F,(t) = 4y2(-l)“+1(1 - y2)-1a,-2cos a,y sin urn 5 

GAB,,, - (J,,,~B,,, = 0, G,,, = n (2m-1)/2, m-1,2,3 ,... 

and the potential solution 

PC = E-‘h *?I N, (5) c, + k-‘h jl n; (5) cv 

T, (5) = up-’ BI~&(l? r5) - WAY, 01 

Jf, (C) = -BI@Y* (1, rt) - WY, (v, 5)l 

Nq (5) = a,oX,(l, r5), B = (Y’ - I)-’ 

X, (5, y) = co9 a95 sin a,y, Y, (z, y) = cos aq5 cos a,y 

GAC, - aqeCq = 0, eaACv - aV2Cv = 0 

where ap and av are, respectively, the complex and real roots of the characteristic equation 

/l/ that lie in the right-hand half plane. 
Subsequently we use also subscripts p and p for denoting, respectively, the complex and 

real roots (and related quantities). Functions Xv and Yv are obtained from X, and Y.,by the 

substitution in the latter of v for IJ, and the expressions for Tv, M,, and NV are obtained 
by a similar substitution in T,, M,, and N,, followed by multiplication by Ilcos G. 

We seek the critical value of parameter t (or y) for which the equations of neutral 

equilibrium with similar boundary conditions at the plate end-faces 

and at the side face 

a,, IE=fl = ass Ir-*r = ass If+r = 0 (1.4) 

a,,~,-~ = a,, lnCO = '& lnCO = 0 (1.5) 

which imply absence of additional loading, admit nontrivial solutions. According to /3/ this 

problem is equivalent to that of stationarity of the functional of the additional potential 
energy of deformation 

rI=Sj\EdT (1.6) 
T* 

where E is the volume density of the additional deformation energy in the metric of the unde- 
formed state /3/. 

Let us represent the additional displacements and function pin the form of sums of homo- 
geneous solutions 

u = u + u" + U*, V = v+ v" + v*, w = w + w” + w*, p = P + p” + p* 

Using Gauss divergence formula and taking into account that homogeneous solutions satisfy 
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equations of neutral equilibrium /7,1/ and boundary conditions at the plate end-faces, for 
the variations of functional II we obtain 

HI= ss(a& f &6v + &38w)do (1.7) 
0 

The procedure with the variation 6n[ used below is similar to that described in detail 
in /4,8/. We denote the boundary values of functions Y (ra,s), &Y(n, s), R, (n,s), C,(n, s), and 
C, (n, s) at the contour I’ by II, (s), $1 (s), 0, fs), cq (s), and G (4 ‘ respectively. As in /8/, we 
introduce the operators Kij, and S,(q)(i, j = 1,2) 

~hyl,, = Ku+ + Ku++,, & A'4 In=0 = KS& t- K& 

a,@ In=0 = s1 (n) cp, ale@ In=0 = S,(n) rp 

It is assumed that function @((n,s) satisfies the equation 

E~AQ~-I$D=O (ReqfO) 

(1.8) 

(1.9) 

and v(s) represents the boundary value of (D(?z,S) on r. As in /8/ the asterisk indicates 
conjugate Lagrange operators (e.g., Kn*). 

In the variational equation (1.7) 6$, 6q1, 6b,, I%,, 6c, are taken as the independent varia- 
tions. We carry out in (1.7) integration with respect to 5 and, using (1.8) eliminate the 
dependent variations from the first of formulas (1.9). Then, integrating, where necessary by 

parts, and using conjugate operators, collect the coefficients at independent variations and 
equate them to zero. As the result, we obtain for the determination of boundary values of 
functions Y, B,, C,, CV a homogeneous system of 2 + 3.00 operator equations 

Qa + Km* (Qe + d&a) -t K,,*Q, = 0 (1.10) 
~,QI -I- Q5 -t Ku* (Qe + d,Q,) + &,*Q, = 0 
a,Qll, + S’s* far) Qsk = 0 (k = 1, 2, 3, . . .) 
&$,Qap -t s2&* (ap) Qo,~ f @Qap = 0 (P = 1, 2, 3, -.-I 

E%$QI+ + es&* (a,J Qzw i- eBQail = 0 (16 = 1, 2, 3, . ..I (1.11) 

where 
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Summation from 1 to oois implied by recurring indices, and subscript x indicates summa- 

tion with respect to 4 and Y. For example, l,,Cx = l,,C, + ~,,CV. The prime denotes differen- 

tiation with respect to 5. Quantities QIr, Qz,, Qa,, are obtained, respectively, from Qlpr QzP, 
QSP by the substitution which also applies to integrals with respect to 5. 

example, JI,, +k are obtaifei ",rhm 
For 

J1,, n pk by the substitution of p for p ;r,, is obtained 

from rP4 by substituting v for Q.; l,,y from l,, by substituting p for pand v for p, and so 

on. Explicit expressions of integrals are not presented because of their unwieldiness. We 

only point out that J,, = 0 = JbI, (p, k = 1, 2, 3, . ..). ikm = 0 when k # m. 

System (l.lO), (1.11) depends on the parameter of initial deformation y explicitly and 

implicitly in terms of roots of the characteristic equation. As a-0, it can be considered 

as a system of integrodifferential equations /4/. A direct inspection shows that when the 

initial deformation is removed, i.e. when y-l, system (1.10) (assuming that c,=o) becomes 

the corresponding system derived in /4/ for the case of an incompressible material. There 

are, however, two essential differences from /4/, viz: first, the problem considered here is 

that of stability, i.e. the generalized problem of eigenvalues of system (l.lO), (1.11) (as 

the spectral parameter we have here the quantity y which is to be determined), and second, 

we have an additional denumerable set of unknown C, and, consequently, an additional system 

of Eqs. (1.11) that is required for the determination of their boundary values. Theseaspects 
complicate the asymptotic analysis of behavior of solutions of system (l.lO), (1.11) as e-0. 

The first because of the complex dependence of this system on y, and the second owing to 

theirregularbehavior of roots try, as y-1. 

2. According to /l/ the characteristic equation may be presented as follows: 

sina6+q(6)sina(2+6)=0, 6=y-1, q(6)=6(2+6)-‘(63-446-4)(6~+662+86+4)-1 (2.1) 

Investigation shows that any positive root of Eq. (2.1) may be represented as 

a p = n@-' + x* (cl = 1, 2, 3, . ..) (2.2) 

where z,, is the solution of equation 

5 = - S-r arcsin {q sin [2 a@- + (2 + 6) sl} (2.3) 

It can be shown that for 6>0 a unique real solution of Eq. (2.3) exists for any p >I. 
Since the function ~~(6) is bounded, it has a singularity at the point 6 = 0. Attempts at 

obtaining an asymptotic formula for 5 (6) as 6-O proved unsuccessful. Nevertheless, the 

following expression follows from (2.3): 

sP (8) = &a, - + Ba, + f S%, (30 + ar9) + . . . , up = sin I2n~b&’ + (2 + 6) 4 (@I (2.4) 

which obviously is an implicit asymptotic expansion of the function Z,,(6). The numerical 

solution of Eq. (2.3) enables us to obtain approximately any terms of the expansion (2.4). 

However, for the purpose of this investigation this is insufficient, since in analyzing the 

asymptotic behavior of solutions of system (l.lO), (1.11) for E+O it is reasonable, taking 
into account the character of dependence of (1.10) and (1.11) on e, to seek all of the un- 
knowns in the form 

Y = Y, + EYE + e2Yy, + . . . . b, = b,, + Eb,I + Gb,, + . . . (2.5) 

cn = cqo + ECql + E%** -1 . . . . cv = cvo + EC,, + “Vv* + . . 

y = 1 + ylE2 + y,E3 + Y3E4 f . . . 

It follows from (2.6) that it is necessary to obtain expansions 

ent on y, in particular of roots mo7 mgr a,. For a, and a,this 
substitution of (2.6) into the perturbation formulas /l/ 

(2.6) 

in s of all quantities depend- 

is trivially solved by the 

ao=~(l-y~)“: [I + -g(1 -yy + O((1 --y)*)] (2.7) 

ap = ape + apl (yz - 1) + 0 ((y” - 1J2): sin Za,, = L-t,,, apl = - agO (2 + Wa,0)/4 (2.8) 

This proves insufficient for av, since in the substitution in (2.4) of y1~2 +y# +... for 6, 

all unknown coefficients vk (k> 1) are already present in the first terms of expansion (2.41, 

whichexcludesthe possibility of their subsequent determination. 
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This difficulty can be overcome as follows. Investigation shows the estimates 

5' = 0 (6-a), 5" = 0 (b-7), 2"' = 0 (s-11) 
(2.9) 

hold for derivatives 5' (6), t" (IS), r"' (6) calculated on the basis of (2.3) for e-+0- Con- 

sequently, using the formula of finite increments for x(yle2 + y.# + . ..) we obtain 

5 (yd + Y$ + . ..) = 5 (6,) + 5’ (6,) (y& + y2d0) + (2.10) 

Vzx” (6,) y,w + 0 (ES), 6, s yd + Y2E3 i- . . + Y,E” 

The number of terms in (2.10) can be increased by introducing derivatives of higherorder 

and obtaining for them estimates of the type (2.9). Expressing ~'(6,) and ~"(6,) in terms 

of x(6,) and applying formula (2.4) (setting in it 6 = 6,,.), from (2.10) we obtain 

x,, (y& + y2.ss + . ..) = ‘/au,, -- 3/&e%,, + (ysg,, - ‘/&a,,,) E3 + 0 (El), up* = sin e,,, b,, = cost),, (2.11) 

8 
WEZY;29*b,,. 

p* = 2Jv5*-’ + (2 + 6,) qL*, ILL* --5p(b*), gLb= ~*easzp n*+(a_L~*)9~ =0(l), q*=q(8*) 
1 * P, 

In conformity with (2.21, (2.6), and (2.11) we have 

a p = sPyl-1a-2 - nyy,y,-2a-' + %a,* -F skyl-3 (yzZ - Y1Va) + nlly1-4 (2 y1yzy3 - y23 - y&) E $ . (2.12) 

The singularity of formula (2.12) is in that it contains in "bounded" form only the first 
seven coefficients yk. If they are already known, then, solving numerically Eq. (2.3) for 

6 = 6,, it is possible to construct successively all terms of expansion (2.12), as the remain- 

ing coefficients are determined. 

3. Let us pass to the asymptotic analysis of system (l.lO), (1.11) as E’O. We 

shall seek a solution of the form (2.5), (2.6). Note that unlike in /4/ in our problem 

operators Kij depend on E. Taking into account (1.3) and (2.7) it is possible to show the 

validity of expansion 

The asymptotic expressions for Si(c,) and Si (cr)(i = 1,2) (and for their conjugate 

Lagrange operators) is obtained using the data of /4,8/ and formulas (2.6), (2.8), and (2.12). 

The expansions of Si (uk)(i=I, 2) for E -+O differ from those in /4,8/, since roots ck are 

independent of y. 

We substitute (2.5) and (2.6) into system (l.lO), (l-11), and using formulas (2.7), (2.8), 

and (2.12) and the indicated asymptotic representation of operators, and successively equate 

to zero the coefficients at E,s2,a3,.... As the result we obtain in the first approximation 

with respect to e the following relations (henceforth the prime denotes a derivative with 

respect to S): 

4akbko + 5 B,,c;~ = 0 (k=1,2,3,...) 
9=1 

(3.2) 

8npyl%lro = 0 (p = 1, 2, 3, . ..) 

xq = czp0-1 sin2 ap0, Bkp = 8 (-l)k+‘a,o (uk - ago)-2 cosl aqo 

A,, = 8a,2aqo2 (up0 - ap&s (co? up0 - co9 a,+) (p f q) 

A,, = 4aio (1 - $ cos2 ape) 

(3.5) 

where e is a unit operator. 

The analysis of system (3.4) relative to %Q shows that in the domain of sequences 

bounded with weight 42, it has only the trivial solution I+ = 0. Obviously Eqs. (3.1) and 

(3.2) are also satisfied, and from (3.3) we have bh.O = 0 and from (3.5) C,,O -0. 

Equating to zero the coefficients at &' we obtain (here and subsequently, summation 

with respect to subscripts 4 and mis implied, whenever an expression contains not less than 
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two similar subscripts) 

(3.6) 

D,Y,I,=, -I- G,x,c,r = 0 (D, - -4yi& - V&A + 4/a &dl) 

4ckblri + 8 (-l)ku~-*d,Y,I,,=O + BBQcnl’ = 0 (k L 1, 2, 3, . ..) 

(3.7) 

(3.8) 

APnCql = 0 (p = 1, 2, 3, .,. ) (3.9) 

8n/~yr-%,, = 0 (IL = 1, 2, 3, . ..) (3.10) 

From (3.9) we again have cql = 0 , and from (3.6) and (3.7) the boundary conditions for Y, 

D1 Yy, l,,=,, = 0, D Y 1 = = 0 a clnll (3.11) 

The equation for Y,, is obtained from (1.3) using (2.7), and is of the form 

A=Y’, + Va ylAY,, = 0 (3.12) 

It can be shown that (3.12) is the same as the Saint Venant equation of the classical 

theory of platesstability/6/ based on Kirchhoff's hypotheses, and the boundary conditions 

(3.11) define in the order of succession the equality to zero of the bending moment and the 

sum of the shear force and of the torque derivative with respect to s (Yy, coincides within 

terms of order E with the buckling of the middle plane). This shows that the classical theory 

makes possible the correct determination of the principal term of the asymptotic expansion of 

critical load for a plate with a free edge. With problem (3.11), (3.12) solved for Y,, it 

is possible to obtain from (3.8) bkl. From (3.10) we again have $1 = 0. 

In the third approximation with respect to E we have 

D1 Yy1 In=,, + 8 (-4)"' c,-*b,i' + G1 xgcp2 = 0 

D, Yi In=,, - 4 yz 31 Y, ln=o + 8 (-I)“‘+’ a,,,-* (pb,,)’ + G,x,c,, = 0 

(3.13) 

(3.14) 

4crkbk2 - lOp& + 4 (-i)k ck-' (2UkdlY1 - pdlYY,),,, f BP& = 0 (k = 1, 2, 3, . ..) (3.15) 

A,&,, = 0 (p = 1, 2, 3, . ..) (3.16) 

8 xllyl-3cP2 = 0 (p = 1, 2, 3, . ..) (3.17) 

From (3.16) and (3.17) we again have cR2 ~0, and c,, = 0, and from (3.13) and (3.14) the 
boundary conditions for Yr 

DIYl In+ + 8 (-1)” u,,-~ b,l’ = 0, D,Yy1 I,,=,, - 4y,&Yy, In=0 + 8(--1)"'+'~,,,-~ (pb,,)’ = 0 (3.18) 

As implied by (1.3), function YI satisfies the equation 

A2YI + s/Z ylAY1 I= -‘fs y*AYy, (3.19) 

The solution of the boundary value problem (3.18), (3.19) provides the first corrections to 
the classical theory: yz and Yi. It is, then, possible to obtain bk, using (3.15). 

Without writing down the fourth approximation, we would point out that it generally yields 

cq3 # 0, while as previously $3 = 0. Investigation of subsequent approximations shows that 

C&4 = CPS = . . . = $10 - ~ 0, and that $11 is generally nonzero. Hence it is possible to assert 

that at least 11 coefficients yl,yz, . . . . ~11 are independent of potential solutions which are 

irregular as y+l. Which means that when the latter are disregarded, the relative error of 

critical load determination is of an order not lower than &” . It is also possible to show 
that the relative error of determination of displacements is of an order not lower than sB, 

and that of additional stresses is of an order of E'. 

Thus the potential solutions that are irregular as y + 1 have in the case of thin plates 

a very small effect on the critical force magnitude and on the stress-strain state of the plate 
This could have been foreseen based on mechanical considerations, since the equations derived 
above for y close to unity strongly oscillates across the thickness, and that, consequently, 
the buckling of thin plates corresponding to them should be expected to be insignificant. 

The above analysis leads to the following conclusions: 

1) the principal term of the critical load asymptotics, as e-t0 is only determined by 
the penetrating solution; 

2) the first two corrections yz and y3 depend in the classical theory on the vortex and, 
also, on the penetrating solution; 

3) the potential solutions that correspond to the regular part of the spectrum affect 

only the third (and subsequent) correction; 
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4) in the case of a thin plate the dependence of the critical force on potential solu- 

tions that are irregular as y-t1 is very weak, appearing from the eleventh (and possibly 
higher) correction. 

Note that after the determination of yl,yz,..., y, it is possible to numerically determine 

=u*= z,, (VI&' + + '?;EB)> which enables us to obtain asymptotic expansions of all quantities 
associated with ap_ This shows that the proposed asymptotic process is constructive. It is, 
at the same time, difficult to be certain, as in /4/, of its unbounded continuation. Because 
of the nonuniformity of perturbations of the regular part of potential solutions in the neigh- 
borhood of ?=I, its termination at some stage cannot be excluded. A similar situation 
occurs in much simpler problems on eigenvalues /9/. 

4. In the case of axisymmetric buckling of a circular plate, we obtain for yk the fol- 

lowing expressions: 

y1 = 2s / 3, y2 = 0, y3 = 2y12 (8x - 1) / (5y), y1 = -32s,s3 / (9y) 

ys = yIs (5760x3 - 10288~~ + 7392x - 3027)/ (140~~) 

s* = 0.0762, y = 4x - 3, 2 1/?i J, (vi) - J1 (1/T) = 0 

where J, and Jr are Bessel functions of the first kind. The expression for S* is obtained by 
solving the infinite system of linear algebraic equations cq3 using the method of truncation 
with retention of 30 roots a40 - Note that the system in %4 is solved analytically. 

From (1.2) and (2.6) we obtain the following expressions for the critical force: 

t, / G = 2y,E2 + (2y, - '/sy~') .+ + 2y,E5 + (2y, -k '/,y13 - %y~ys) Es + . . . (4.1) 

where the first term corresponds to the applied theory based on Kirchhoff's hypotheses /6/. 

It can be shown that 2y,- yr2/3> 0. This shows that the classical theory yields an inadequ- 

ate value for the critical force, with the relative error of the order of E’. 

For the critical force we obtain from (4.1) 

t,r / G = 6.254~~ + 14.871~" - 3.552~~ + 39.273ea + . (4.2) 

The magnitude of coefficients in (4.2) makes it possible to expect this asymptotic formula to 

be valid also for fairly thick plates for which E reaches the values O-3-0.4. 

The author thanks L. M. Zubov for his interest in this work. 
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