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ASYMPTOTIC THEORY OF ELASTIC PLATE BUCKLING UNDER
LATERAL COMPRESSION”

A. N. RUDEV

Homogeneous solutions obtained in /1/ are used for investigating in three-dimension-
al formulation the stability of a thick plate of arbitrary shape of neo-Hookean
material and free of constraints, /2/. Boundary conditions at lateral surfaces

are obtained using the variational principle of superposition of a small deforma-
tion on a finite one, as proposed in /3/. As the result, the problem of critical
pressure determination is reduced to the general problem of eigenvalues for an in-
finite homogeneous system of operator equations whose dependence (explicit as well
as implicit) on the initial deformation parameters is essentially nonlinear. The
asymptotic method proposed in /4/ is extended so as to make possible the determina-
tion of critical load asymptotics, as the plate thickness & approaches zero. The
effect of potential solutions that correspond to irregular (with the initial deforma-
tion eliminated) roots of the characteristic equation /1/, and have no analogs in

the linear theory of elasticity /5/, on the plate stress-strain state and on the
magnitude of critical pressure is determined. It is shown that the two-dimensional
theory of plate buckling based on the Kirchhoff hypotheses /6/ makes possible the
correct determination of the principal terms of thecritical load asymptotics as

e —0. As an example, the axisymmetric buckling of a circular plate is considered.
Five terms of the asymptotic expansion of the critical locad are obtained. It is
established that the classic theory yields a deficient critical force, with a
relative error of the order of e2,

1. Let us consider a plate of incompressible neo-Hockean material of thickness 2k sub-
jected to uniform pressure ¢ at its side surface. It is assumed that the plate is unrestrain-
ed, its end-faces free of stress, that mass forces are absent, and the surface loading is
dead. Under these conditions the plate deformation is defined as follows:

Yy = My, Yo = Azy, Ys = A7%zy; (A = const) (1.1)

where zx, yx (k= 1,2,3) are Cartesian coordinates, respectively, prior to and after deforma-
tion. The relation between ¢t and A is such that

t=G (Mt — Ay (1.2)

where G is the shear modulus of the material. A small bending deformation, defined by the
equations of neutral equilibrium in /7,1/, is superposed on the finite deformation (1.1).

We introduce a local system of dimensionless coordinates n, $, §{ /5/. The following nota-
tion is used below: T is the volume of the undeformed plate; o0 is the plate surface; I is
the contour bounding the middle plane (assumed reasonably smooth); R is the radius of curvat-
ure the contour TI'; 2a¢ is a characteristic longitudinal dimension of the plate; p=4a/R is
the dimensionless curvature; e=h/a is the plate relative thickness; u, v, w , and Oxm (K,
m=1,2,3) are vectors of additional displacement and of the additional Picla stress tensor
/2,7/ in the system n, s, { with indices 1,2,3 corresponding, respectively, to axes n, s, {; p
is the indeterminate function of coordinates related to the incompressibility of the material
/2/: H = {1+ pn)™' is a quantity inverse to the Lamé coefficient of the considered curvilinear
coordinate system; 4;(i = 1,2) are operators of differentiation with respect to n and S,
respectively, and A is the two-dimensional Laplace operator in variables n and s.

In the local coordinate system the homogeneous solutions of neutral equilibrium equations
/1/ are of the form (y=47% =14 y3:
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Asymptotic theory of elastic plate buckling 623

The penetrating solution
U = aey(0,¥ + ae?4 ({)5,A¥
= aeyLHO,Y 4 ae?4 ()HI,AY
W = —a¥ + ae?B ({)AY, P = eAl ([)AY
A (D) = —yao L + gapt [0X, (1, v8) — 2¢X, (v, D))
B (L) = ag? + gloY, (1, v0) — 2y°Y, (v, D)]
C (D) = oy '@ cos agX, (1, vE), &=, (y" — 1) cos ap
X, (z, y) = cos auz sin agy, Yo (z, y) = €0s ayz COs gy
2 AW — AV = 0 (1.3)

where @, is any of the two pure imaginary roots of the characteristic equation /1/,
the vortex solution
u=—ag? ) Fr(Q) HOBr, v°=08® 3 F()01Bm, @ =p°=0
m=1 m=1
Fo(D) = 4yH(—1)"(1 — ¥*)"'0,,7%c0S 0,7 sin 0y, §
e?AB,, — 0By =0, 6 =0 2m —1)/2, m=1,2,3,...

and the potential solution

U, = ae 21 T {(8)0:Co + ae 21 Ty (8) 0:Cy
9= v=

Dy = A€ 21 T, Q) H3sCy + ae D) Ty (L) HAL,
Q= v=1

Wy=—aua g,l M,Q)C,—ae El M, (@) Cy

Py =27 qgl No(@Q)Coy+ &0 vgl Ny@)Y Cy
To (D) = o BloX (1, v8) — 29X (y, 1)l

M, (D) = —BloY, (1, v8) — 2y*Y, (v, D)
Ny (D) = 20X, (1, ¥8), B=G"—17
X, (z, y) = cos agzsin oy, Y, (x, y) = cos oz cos ay
e?AC; — a2Cy = 0, &?ACy — a,2Cy =0

where a, and ay are, respectively, the complex and real roots of the characteristic equation

/1/ that lie in the right-hand half plane.

Subsequently we use also subscripts p and p for denoting, respectively, the complex and
real roots (and related quantities). Functions Xy and Y, are obtained from Xg;and Y,by the
substitution in the latter of v for g, and the expressions for 7Ty, My, and N, are obtained
by a similar substitution in T, M, and N, followed by multiplication by 1/ cos a,.

We seek the critical value of parameter ¢ (or y) for which the equations of neutral
equilibrium with similar boundary conditions at the plate end-faces

931 lt=t1 = Opa lt=1 = O35 lt=31 = 0 (1.4)

and at the side face

Oy1ln=d = Oy lnmo = O3 Inmo = 0 (1.5)
which imply absence of additional loading, admit nontrivial solutions. According to /3/ this
problem is equivalent to that of stationarity of the functional of the additional potential
energy of deformation

H=S§SEd1: (1.6)

where E is the volume density of the additional deformation energy in the metric of the unde-

formed state /3/.
Let us represent the additional displacements and function p in the form of sums of homo-

geneous solutions
u=U+4+u~uy v=V+v'+v,, w=W+uv'°+w,, p=P+p°+p,

Using Gauss divergence formula and taking into account that homogeneous solutions satisfy
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equations of neutral equilibrium /7,1/ and boundary conditicns at the plate end-faces, for
the variations of functional II we obtain

= SS (811511. + 01261) + 013610) do (1.7)

o

The procedure with the variation 68l used below is similar to that described in detail
in /4,8/. We denote the boundary values of functions ¥ (n,s), &% (n, s), Bn (1, 9), Cy{n, 8), and
Cy(n,s) at the contour T by ¢ (s), Y1 (8), bm (8), ¢4 (s), and ¢, (5), respectively. BAs in /8/, we
introduce the operators K;;, and S;(n) (@, 7=1,2)

AY =0 = KuY + Ky, 01 AY [0 = Knp 4 Koy (1.8)
AD [neo = 83 (1) @y 9°D o = Sy () @ (1.9)
It is assumed that function @ (n,s) satisfies the equation
e2AD — W@ =0 (Ren 5= 0)
and ¢ (s) represents the boundary value of ®(n,s) on I. BAs in /8/ the asterisk indicates
conjugate Lagrange operators (e.g., Ku*).

In the variational equation (1.7) &¢, 6y, 8by, 8¢, 8¢, are taken as the independent varia-
tions. We carry out in (1.7) integration with respect to { and, using (1.8) eliminate the
dependent variations from the first of formulas (1.9). Then, integrating, where necessary by
parts, and using conjugate operators, collect the coefficients at independent variations and

equate them to zero. As the result, we obtain for the determination of boundary values of
functions W, Bn, C4 Cv a homogeneous system of 2 4 3.00 operator equations

Qy -+ Kio* (Qs + 0503 + Kp*Qy =0 (1.10)
6201 + Qs + Ku* (Qs “+ 5203) + K21*04 =0
G - S (o) Qo =0 (k=1,2,3,..)
e20,Qhp + €25:* () Qop + 805 =0 (p =1, 2, 3, ..
233,01 + e85:* (o) Qo + €%Qq =0 (n =1, 2,3, ..) (1.11)
where
Q = e*diAnY — €21, dyB,, + 2 1diCr
Qy = 2ApY + 0l ndiB,y + (88002 + ) Cu
Qs = e8diAu ¥V — e81,,d, B, -+ e85 d 0y
Q, = ALY + efoly,diB,, + & (8856 -+ J) Cx
Qs = dy (25_1 + EgHaA) k4 + 8Ismas'.Bm - analcu
Q¢ = £20) (Rg + 2R AY ¥ — €314,0,B,, + &3 4401Cx
Qu = SARY + 0ixndiBy + & (Eidr® + k) Cx
Qo = A3 Y + efiyndyBy — 1diCy
Qrp = A, Y — 0™ frpdy By + pudiCy
Qo = A ¥ + &pdiBm + (01”4 pn} C
Qap == e 0 (ﬁ_l Jsp + GZJBpA) ¥+ 8npma.':Bm - rpxalcx
Ap = Ry + €Ri1A, Ay = 0*An + RA
Agy = Ry -+ 2R A, Ay = 81%As; - RA
A]k = 812A3k + 151;A, Ag}; = 031A3;,~, A3;; = (11;; + 8212;;A)
A),p R dlA;;p, Agp = aleap ’*}‘ JTpAa Asp = le -§' SszpA
Gy = pdy — 010y, dy = 8;* — §7°0,° — %0,
Ry = ay* (G, & Ry= oy <L, 4), Ry =7y <L, C)
Ry = w<A,A4)>, R, =d{A4,C), Ry =<1, v4" + B
By = B <1, By, Ry =B, y4" + By, Iy =v<E Fy
Iy = <A, Fyp, Iy =y <4, B> Iy = <8, Fy"

Iox = (Fry €y ki = Fy, Fr>y Jap = @ (Fx, Tpp
kkp::<Fk1Np>» le::u)'\:({;, Tp>a szﬂ?(Q,N;Q

Jop = 0 <4, Tpd, Jyp = <A, Np>, Jop = <1, 3T — Mp>
Jop = By 4Ty — Mpy, Jop = {Tp, €Dy Jop =<1, Mpp
Jop == (Mp, yA" 4+ BY, g =y My, i\, lyy=0a<T,, T
Mgq == (Tp, No>, oy = (My, yT, — M

I
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+1
g gy ={ s e dt
—1

Summation from 1 to oo is implied by recurring indices, and subscript x indicates summa-
tion with respect to g and wv. For example, [,Cy = l;Cy + lpCy. The prime denotes differen-
tiation with respect to {. Quantities @y, Qu, Qs are obtained, respectively, from Qi Qs
Qsp by the substitution p ~un , which also applies to integrals with respect to (. For
example, Jy,, nue are obtained from Jyp, nyr by the substitution of p for p;rp,, is obtained
from ry,, by substituting v for g¢7/,, from lpq by substituting p for pand v for g¢, and so
on. Explicit expressions of integrals are not presented because of their unwieldiness. We
only point out that Jy; =0=J; (p,p =1, 2,3, ...), ixm =0 when k=*=m.

System (1.10), (1.11) depends on the parameter of initial deformation y explicitly and
implicitly in terms of roots of the characteristic equation. As ¢—0, it can be considered
as a system of integrodifferential equations /4/. A direct inspection shows that when the
initial deformation is removed, i.e. when y—1, system (1.10) (assuming that ¢, =0) becomes
the corresponding system derived in /4/ for the case of an incompressible material. There
are, however, two essential differences from /4/, viz: first, the problem considered here is
that of stability, i.e. the generalized problem of eigenvalues of system (1.10), (1.11l) (as
the spectral parameter we have here the quantity 4 which is to be determined), and second,
we have an additional denumerable set of unknown ¢, and, consequently, an additional system
of Egs. (1.11) that is required for the determination of their boundary values. These aspects
complicate the asymptotic analysis of behavior of solutions of system (1.10), (1.11l) as &—0.
The first because of the complex dependence of this system on y, and the second owing to
the irregular behavior of roots a,, as y—1.

2. According to /1/ the characteristic equation may be presented as follows:
sinad +¢(0)sina(2+8 =0, §=y—1, g6) =02 4 8)1(8®— 45 — 4) (6% + 662 + 88 + 4) (2.1)

Investigation shows that any positive root of Eq. (2.1) may be represented as

a, =napud 4+ 2, (=123 ..) (2.2)

where gz, is the solution of equation

z = — 67! arcsin {g sin [2 np&7! + (2 + §) 2]} (2.3)

It can be shown that for §>0 a unique real solution of Eq. (2.3) exists for any p > 1.
Since the function z,(6) is bounded, it has a singularity at the point § = 0. Attempts at
obtaining an asymptotic formula for z,(8) as & — 0 proved unsuccessful. Nevertheless, the
following expression follows from (2.3):

23 (8) = 3 Gy — - 80y + 5 8%, (30 + @) + . .., @, = sin (228 + (2 + 8) 2, (6)] (2.4)

which obviously is an implicit asymptotic expansion of the function &, (8). The numerical
solution of Eq. (2.3) enables us to obtain approximately any terms of the expansion (2.4).
However, for the purpose of this investigation this is insufficient, since in analyzing the
asymptotic behavior of solutions of system (1.10), (1.11) for &—0 it is reasonable, taking
into account the character of dependence of (1.10) and (1.11) on &, to seek all of the un-
knowns in the form

Y=Y, +e¥ + ¥, + ..., by =bme + &bm1 + €y + ... (2.5)
Cg = Cqo T E6q1 1 €%g -+ ..., €y = Cyg + ECy1 - By, + ...
v =14 yie? + v,&° + ypet + ... (2.6)

It follows from (2.6) that it is necessary to obtain expansions in € of all quantities depend-
ent on y, in particular of roots a,, @g, %y. For oy and a, this is trivially solved by the
substitution of (2.6) into the perturbation formulas /1/

3 . 13
ao= YT (t— vy [ (1 — ) + O (4 — 1) (2.7)
Gy = Qgo + &g (¥ — 1) 4+ O ((¥2 — 1)?), sin 205 = 20050, Qg1 = — Ggp (2 + ct8% @gy)f4 (2.8)
This proves insufficient for a,, since in the substitution in (2.4) of 7y 4 y,8® + ... for 8,

all unknown coefficients y, (k> 1) are already present in the first terms of expansion (2.4),
which excludes the possibility of their subsequent determination.
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This difficulty can be overcome as follows. Investigation shows the estimates
=00, a7 =0(7), 2" =0(" (2.9)

hold for derivatives z’(8), 7 (8), 2~ (§) calculated on the basis of (2.3) for &§—>0. Con-
sequently, using the formula of finite increments for z (y,e? 4 v,&* + ...) we obtain

z (118® + 28° + ) =2 (8,) + 27 (8,) (vee® + yoel®) + (2.10)
Y27 (8,) ¥5%€™® + 0 (e%), 8, = v1e? + y,8° + ... + 12¢°

The number of terms in (2.10) can be increased by introducing derivatives of higher order
and obtaining for them estimates of the type (2.9). Expressing z"(8,) and 2" (§,) in terms
of z(6,) and applying formula (2.4) (setting in it & =§,), from (2.10) we obtain

Zp (V18 + 798 4 .) = Yaauy —— VaviEau, + (Yeguy — Yavaaus) € + O (Y, auy =sin 0y, by, ~cosb,, (2.11)

-1 2pey " gad,, .
By = 2700, -+ (2 + 6,) Ty, Tup = 7w (B, Bu= 8, cos z,,,8, _*_1 ) i 80 daby =0(1), g.=q(3,)

In conformity with (2.2), (2.6), and (2.11) we have
O = PP — ey e 4 Vaauy F ARy (122 — Vave) T oapyt @ vaveys — w0 — v e+ (2.12)

The singularity of formula (2.12) is in that it contains in "bounded" form only the first
seven coefficients yx. If they are already known, then, solving numerically Eq. (2.3) for
6 = 8,, it is possible to construct successively all terms of expansion (2.12), as the remain-
ing coefficients are determined.

3. Let us pass to the asymptotic analysis of system (1.10), (1.ll) as e—>0. We
shall seek a solution of the form (2.5), (2.6). Note that unlike in /4/ in our problem
operators K;; depend on &. Taking into account (l.3) and (2.7) it is possible to show the
validity of expansion

Ki]' = Kij,o + E’Kij,l +82K“"2 + e

The asymptotic expressions for S;(zp) and S; (@) (i =1,2) (and for their conjugate
Lagrange operators) is obtained using the data of /4,8/ and formulas (2.6), (2.8), and (2.12).
The expansions of S; (6y)(i=1,2) for e— 0 differ from those in /4,8/, since roots ok are
independent of 7.

We substitute (2.5) and (2.6) into system (1.10), (1.1l1l), and using formulas (2.7), (2.8),
and (2.12) and the indicated asymptotic representation of operators, and successively equate
to zero the coefficients at e, ¢% €%, .... Bs the result we obtain in the first approximation
with respect to & the following relations (henceforth the prime denotes a derivative with
respect to s}

Gy glxcho =0 (Gi= 4pe — 8K1oo) (3.1)

G, éluchbso (Go = 405 — 8K o) (3.2)

4oybyo + ngh.qc;n_—.O (k==1,2,3,..) (3.3)
qglqucqo=o (p=1,2,3,.. (3.4)

8apy e =0 (w=1,2,3,..) (3.5)

%g == Ggo ! 5in% Gg0, Byg == 8 (—1)*lay (0% — tge)? cos® g
Ay = Bage®tge® (@po — ape)™® (cos® apo — cos?ag) (p = g)

App = 4ad, (1 — —? cos? a,,o)

where e is a unit operator.

The analysis of system (3.4) relative to ¢, shows that in the domain of sequences
bounded with weight ¢%, it has only the trivial solution ¢, = 0. Obviously Egs. (3.1) and
(3.2) are also satisfied, and from (3.3) we have by = 0 and from (3.5) ¢y = 0.

Equating to zero the coefficients at & we obtain (here and subsequently, summation
with respect to subscripts g and mis implied, whenever an expression contains not less than
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two similar subscripts)

D1¥olumg + Grtgeqr = 0 (Dy = Y3 (6% -+ A)) (3.6)
D¥Wlneo + Gt = 0 (Dy = —4y18; — 8/301A + /5 3ydy) (3.7)
dorbrr + 8 (—1) 03 2d1Wolnmo + Brgcr’ =0 (k =1,2,3,..) (3.8)
Apgea =0 (p=1,2,3,..) (3.9)

rpyi % =0 (p=1,2,3,..) (3.10)

From (3.9) we again have ¢, =0, and from (3.6) and (3.7) the boundary conditions for ¥,

DiY¥ lh=o =0, D)Wy lpmp=0 (3.11)
The equation for ¥, is obtained from (1.3) using (2.7), and is of the form
AW, + 3/, 9 AW, =0 (3.12)

It can be shown that (3.12) is the same as the Saint Venant equation of the classical
theory of plates stability /6/ based on Kirchhoff's hypotheses, and the boundary conditions
(3.11) define in the order of succession the equality to zero of the bending moment and the
sum of the shear force and of the torque derivative with respect to s (¥, coincides within
terms of order ¢ with the buckling of the middle plane). This shows that the classical theory
makes possible the correct determination of the principal term of the asymptotic expansion of
critical load for a plate with a free edge. With problem (3.11), (3.12) solved for V¥, it
is possible to obtain from (3.8) by1. From (3.10) we again have ¢4 =0.

In the third approximation with respect to & we have

D1 ¥y lp=o + 8 (=)™ 607 %’ + G4 %gCqr =0 (3.13)

Dy W1 lno — 4 %201 ¥y lnmo + 8 (=)™ 0,72 (pba)’ + Gorytyy = 0 (3.14)

4oxbiy — 10pbiy + 4 (—1)F 047 204dy¥1 — pdy¥ohnmo + Bigees’ =0 (K =1,2,3, ...) (3.15)
Apte =0 (p=1,2,3,..) (3.16)

SnpyPe,=0 (n=1,23,..) (3.17)

From (3.16) and (3.17) we again have ¢, =0, and ¢y, =0, and from (3.13) and (3.14) the
boundary conditions for ¥,

Di¥1 fo=o + 8 (—1)" 0m 2 byt” = 0, Dy¥1 lnmo — 41201 %0 lnmo + 8 (—1)™" 0,72 (pbpa)’ =0 (3.18)
As implied by (1.3), function Y¥; satisfies the equation
A + 3y AW = —%, 1,AY, (3.19)

The solution of the boundary value problem (3.18), (3.19) provides the first corrections to
the classical theory: v, and ¥;. It is, then, possible to obtain by, using (3.15).

Without writing down the fourth approximation, we would point out that it generally yields
cq:,;&(), while as previously c¢,;=0. Investigation of subsequent approximations shows that

Cug == €y = ... = 1o = 0, and that eu 1is generally nonzero. Hence it is possible to assert
that at least 11 coefficients 4;, ¥, ..., yn are independent of potential solutions which are
irregular as y—1. Which means that when the latter are disregarded, the relative error of

critical load determination is of an order not lower than €!'. It is also possible to show
that the relative error of determination of displacements is of an order not lower than €8,
and that of additional stresses is of an order of e°.

Thus the potential solutions that are irregular as vy — 1 have in the case of thin plates
a very small effect on the critical force magnitude and on the stress-strain state of the plate
This could have been foreseen based on mechanical considerations, since the equations derived
above for v close to unity strongly oscillates across the thickness, and that, consequently,
the buckling of thin plates corresponding to them should be expected to be insignificant.

The above analysis leads to the following conclusions:

1) the principal term of the critical load asymptotics, as e-»0 is only determined by
the penetrating solution;

2) the first two corrections 7y, and y; depend in the classical theory on the vortex and,
also, on the penetrating solution;

3) the potential solutions that correspond to the regular part of the spectrum affect
only the third (and subsequent) correction;
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4) in the case of a thin plate the dependence of the critical force on potential solu-
tions that are irregular as y-—»>1 is very weak, appearing from the eleventh (and possibly
higher) correction.

Note that after the determination of 9y,%,, ...,y; it is possible to numerically determine

Tpe= %, (1€ + ...+ €% which enables us to obtain asymptotic expansions of all quantities
associated with ¢,. This shows that the proposed asymptotic process is constructive. It is,
at the same time, difficult to be certain, as in /4/, of its unbounded continuation. Because
of the nonuniformity of perturbations of the regular part of potential solutions in the neigh-
borhcod of y=1, its termination at some stage cannot be excluded. A similar situation
occurs in much simpler problems on eigenvalues /9/.

4. In the case of axisymmetric buckling of a circular plate, we obtain for y, the fol-
lowing expressions:

11=22/3, ¥, =0, y5=2v*Bx — 1)/ (5y), ya = —32s,x*/ (9y)
Vs = 7.° (57602° — 10288z% + 7392z — 3027) / (140y%)
5, =00762, y=42—3, 2Vl (Vo) — L (Vo) =0

where J, and Ji are Bessel functions of the first kind. The expression for Sy is obtained by
solving the infinite system of linear algebraic equations ¢;3 using the method of truncation

with retention of 30 roots Qg - Note that the system in ¢, is solved analytically.
From (1,2) and (2.6) we obtain the following expressions for the critical force:
Le ! G = 2v18% + (2vs — Yap®) ' + 2v48° 4 2y, + “ap® — Yaprvs) €8 + .. (4.1)

where the first term corresponds to the applied theory based on Kirchhoff's hypotheses /6/.

It can be shown that 2y, — y12/3>>0. This shows that the classical theory yields an inadequ-
ate value for the critical force, with the relative error of the order of €.
For the critical force we obtain from (4.1)

ty [ G = 6.254e% + 14.871e* — 3.552¢% + 39.273e® + ... (4.2)

The magnitude of coefficients in (4.2) makes it possible to expect this asymptotic formula to
be valid also for fairly thick plates for which & reaches the values 0.3—0.4.

The author thanks L. M. Zubov for his interest in this work.
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